Lecture: Professor Grace L. Axler-DiPerte
Office: S215; Telephone: (718) 368-5745; E-mail: GAxler-Diperte@kbcc.cuny.edu
Office Hours: Tuesdays 10:20-12:30 PM, Wednesdays 10:20-11:20 AM, or via Zoom by appointment.
Lab: Prof. Mary Ortiz (Wednesday; 02L); Prof. G. Axler DiPerte (Thursday; 01L)

Course Description: Examines the diverse structure & activities of microbes in a wide number of environs. Throughout the course, aspects of microbes beyond their ability to cause disease will be studied. These include the use of microbes in food production, antibiotic production, & bioremediation. Laboratory experiments will be conducted to support the concepts studied in the lecture portion of the course, the textbook readings, & other readings. Basic microbiological techniques, such as staining, aseptic transfer, & pure culture techniques will be conducted. More advanced laboratories designed to demonstrate the interdisciplinary nature of microbiology will include collection of marine water and sediment samples for cultivation of algae and the isolation of antibiotic-producing microbes, and studies of various relationships between microbes and other organisms.

4 credits, 6 hours (3 hours of lecture and 3 hours of laboratory).
Prerequisites: Bio 14, Chm 11

Student Learning Outcomes
1. Demonstrate an appreciation for the diverse microbial world with regard to the structure & function of microbes.
2. Perform basic microbiological techniques to stain, cultivate, & identify microbes.
3. Demonstrate the positive & negative effects microbes have on society resulting in historically significant events.
4. Identify commensal, mutualistic, & antagonistic microbial relationships.
5. Analyze the contributions microbes make to soil and aquatic environments by their roles in food webs and nutrient cycling.
6. Apply the interdisciplinary nature of microbiology to the fields of genetics, ecology, food production, and waste management.
Skills you will be performing to learn microbiology
1. Readings from textbook & laboratory manual
2. Lab experiments performed with a partner
3. Use of Blackboard
4. Weekly written assignments
5. Working in a team
6. Solving problems and applying information

TEXTBOOK: Bio 50 Custom OpenStax Microbiology available in Blackboard
LAB MANUAL: Laboratory Exercises in Microbiology 2nd edition available in Blackboard
OTHER REQUIREMENTS: A knee-length laboratory coat & goggles

LECTURE - Topical Outline
Consult our course Blackboard site regularly, as there are items that must be completed prior to our lecture meetings.
Please bring your textbook to every lecture session.

WEEK 1: INTRODUCTION TO MICROBIOLOGY AND ITS HISTORY
An invisible world
What our ancestors knew
A systematic approach
Types of microorganisms

WEEK 2: UNIQUE CHARACTERISTICS OF PROKARYOTIC CELLS
Bacterial morphology
Bacterial structures (nucleoid, plasmids, inclusions, endospores, plasma membrane, cell wall, glycocalyces (capsules/slime layers), appendages (pili/fimbriae) and flagella

WEEK 3: BACTERIAL GROWTH
Bacterial growth curve
Measurement of microbial growth: direct & indirect methods
Alternative patterns of cell division
Factors affecting microbial growth: oxygen, pH, temperature, osmotic/barometric pressure
Media used for bacterial growth
WEEK 4: MICROBIAL METABOLISM
The principles of energy, matter and enzymes
Catabolism of carbohydrates
Aerobic respiration, anaerobic respiration, fermentation
Catabolism of lipids and proteins
Photosynthesis

WEEK 5: MECHANISMS OF MICROBIAL GENETICS AND MODERN APPLICATIONS OF MICROBIAL GENETICS
Review of the basics of DNA replication, transcription and translation
How prokaryotes achieve genetic diversity: conjugation, transformation & transduction
Gene regulation: operon theory

WEEK 6: MICROBIAL MOLECULAR BIOLOGY & GENETICS
Tools of Genetic Engineering: restriction enzymes, ligase, plasmids, and using of genetic transfer mechanisms
Visualizing DNA, RNA and proteins: nucleic acids probes, agarose gel electrophoresis, RFLP, Southern blot, colony situ hybridization, northern blot, microarray analysis, PAGE, PCR, DNA sequencing
Whole genome methods
Gene therapy

WEEK 7: THE EUKARYOTES OF MICROBIOLOGY: PROTISTS AND FUNGI
Protistan classification based on rRNA sequences
Fungal classification based on rRNA sequences

WEEK 8: ACELLULAR PATHOGENS
Viruses and their life cycles
Isolation, culture, and identification of viruses

WEEK 9: MICROBIAL ECOLOGY
Biogeochemical cycling
Microbes in major environments: freshwater, marine, & terrestrial
Microbial Symbioses

WEEK 10: INDUSTRIAL MICROBIOLOGY
Microbial products in the health industry
Wastewater treatment
Microbiology of food and food preservation

WEEKS 11 & 12: SELECTED TOPICS IN MICROBIOLOGY
Pathogenicity
Transmission of Infectious Disease
Antibiotic Therapy
Disease Prevention
LABORATORY

Sequence of Lab Experiments & Assignments
For each week of lab, you will need to bring the exercises with you so that you have the procedures to conduct the experiments. These exercises should be printed, as live microbes are present in the lab.

Please read lab exercises prior to coming to each lab session.

Labs cannot be made up if missed due to the complicated cultures and chemicals involved.

<table>
<thead>
<tr>
<th>WEEK#</th>
<th>EXERCISE TITLE</th>
<th>EXERCISE # (page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check In/ Safety rules</td>
<td>1 (p. 3)</td>
</tr>
<tr>
<td></td>
<td>Bright-field microscope (review of parts and focusing procedure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smear preparation and simple staining</td>
<td>2 (p. 12)</td>
</tr>
<tr>
<td></td>
<td>Negative staining</td>
<td>3 (p. 20)</td>
</tr>
<tr>
<td></td>
<td>Gram staining</td>
<td>4 (p. 25)</td>
</tr>
<tr>
<td></td>
<td>Culture media & aseptic transfer</td>
<td>10 (p. 61)</td>
</tr>
<tr>
<td>2</td>
<td>Acid-fast staining</td>
<td>5 (p. 32)</td>
</tr>
<tr>
<td></td>
<td>Capsule staining</td>
<td>6 (p. 38)</td>
</tr>
<tr>
<td></td>
<td>Endospore staining</td>
<td>7 (p. 43)</td>
</tr>
<tr>
<td></td>
<td>Pure culture techniques (streak plate only)</td>
<td>11 (p. 67)</td>
</tr>
<tr>
<td>3</td>
<td>Bacterial population counts</td>
<td>12 (p. 75)</td>
</tr>
<tr>
<td></td>
<td>Selective & differential media</td>
<td>14 (p. 87)</td>
</tr>
<tr>
<td></td>
<td>Winogradsky column (setup)</td>
<td>Worksheet and 28 (p. 205)</td>
</tr>
<tr>
<td>4</td>
<td>Factors affecting microbial growth</td>
<td>15-18 (p. 97)</td>
</tr>
<tr>
<td></td>
<td>Analysis of the effectiveness of handwashing</td>
<td>22 (p. 131)</td>
</tr>
<tr>
<td>5</td>
<td>Isolation of antibiotic producers- Part I</td>
<td>29 (p. 212)</td>
</tr>
<tr>
<td></td>
<td>Determination of bacterial properties- Carbohydrate fermentation Parts I-V</td>
<td>23 (p. 139)</td>
</tr>
<tr>
<td>6</td>
<td>Determination of bacterial properties - Protein metabolism Part I-VI</td>
<td>24 (p. 151)</td>
</tr>
<tr>
<td></td>
<td>Determination of bacterial properties – Exoenzymes and endoenzymes Parts I-VII</td>
<td>25 (p. 163)</td>
</tr>
<tr>
<td></td>
<td>Bioremediation (setup)</td>
<td>Worksheet</td>
</tr>
<tr>
<td>7</td>
<td>Determination of bacterial properties- Identifying an unknown bacterium- Parts I & II</td>
<td>26 (p. 178)</td>
</tr>
<tr>
<td></td>
<td>Antagonism- Part II (Begin)</td>
<td>39 (p. 301)</td>
</tr>
<tr>
<td></td>
<td>Record Bioremediation results</td>
<td></td>
</tr>
<tr>
<td>WEEK#</td>
<td>EXERCISE TITLE</td>
<td>EXERCISE # (page)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>8</td>
<td>Examination of molds</td>
<td>32 (p. 243)</td>
</tr>
<tr>
<td></td>
<td>Isolation of antibiotic producers- Part II</td>
<td>29 (p. 212)</td>
</tr>
<tr>
<td></td>
<td>Record unknown results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record Bioremediation results</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Examination of algae</td>
<td>33 (p. 252)</td>
</tr>
<tr>
<td></td>
<td>Algal blooms</td>
<td>Handout</td>
</tr>
<tr>
<td></td>
<td>Protozoa and slime molds</td>
<td>34 (p. 260)</td>
</tr>
<tr>
<td></td>
<td>Isolation of antibiotic producers- Part III</td>
<td>29 (p. 212)</td>
</tr>
<tr>
<td>10</td>
<td>Commensalism</td>
<td>37 (p. 289)</td>
</tr>
<tr>
<td></td>
<td>Mutualism- Parts I, II, and III</td>
<td>38 (p. 294)</td>
</tr>
<tr>
<td></td>
<td>Antagonism- Part II (Complete)</td>
<td>39 (p. 301)</td>
</tr>
<tr>
<td></td>
<td>Isolation of antibiotic producers- Part II</td>
<td>29 (p. 212)</td>
</tr>
<tr>
<td>11</td>
<td>Food microbiology- Bacterial counts of food samples</td>
<td>42 (p. 327)</td>
</tr>
<tr>
<td></td>
<td>Use of chemical preservatives to increase the shelf life of apple cider</td>
<td>43 (p. 332)</td>
</tr>
<tr>
<td></td>
<td>Isolation of antibiotic producers- Part II</td>
<td>29 (p. 212)</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of results from week 11</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION TO MICROBIOLOGY/ EVOLUTION OF MICROBES AND THE FIELD OF MICROBIOLOGY

1. Name and explain the difference between the three domains.
2. Distinguish prokaryotic from eukaryotic cells.
3. Name the 5 organisms studied in microbiology and explain how they can be distinguished from one another based on the following properties: (a) cell type; (b) size; (c) type of reproduction; (d) cell division; (e) chemical composition & (f) unique structures, organelles, processes.
4. Define spontaneous generation, cell theory and germ theory.
5. In a brief statement, describe the series of experiments disproving spontaneous generation.
6. Describe Robert Koch’s experiment proving germ theory.
7. List the 4 criteria of Koch’s postulates.
8. Describe in several sentences the significance of the contributions of the following scientists to the field of microbiology: (a) Woese; (b) Pasteur; (c) Winogradsky; (d) Koch.

BACTERIAL AND ARCHAEL CELL STRUCTURES

1. Define the term morphology.
2. Draw and name the 3 most common bacterial shapes and their arrangements.
3. Describe the chemical composition (structure) and function of the following bacterial organelles: (a) cell wall; (b) cell membrane; (c) glycocalyx; (d) endospores; (e) flagella; (f) pili; (g) inclusion bodies; (h) plasmid; and (i) nucleoid.
4. State the chemical differences in the cell walls of Gram-positives, Gram-negatives, and archaebacteria.
5. Name the components of the outer membrane of a Gram-negative cell.
7. Draw and name the 4 bacterial flagellar arrangements.
8. Explain the difference between sporulation and germination.

BACTERIAL GROWTH

1. Name the basic elements required for microbial growth.
2. Define each of the following terms with regard to their energy and carbon source: (a) photoautotroph; (b) photoheterotroph; (c) chemoautotroph; and (d) chemoheterotroph.
3. Define the term culture medium.
4. Explain the difference between a chemically defined and a complex culture medium.
5. Explain the purpose of an enrichment culture and give one example of its application.
6. Describe the following processes of cell division: binary fission, budding & fragmentation.
7. Distinguish cell growth from population growth.
8. Define the term generation time.
9. Draw and label the four phases of a typical bacterial growth curve.
10. Describe the phases of a typical bacterial growth curve.
11. Explain the difference between a direct and indirect method for measuring microbial growth.
12. Name 1 direct method for measuring microbial growth and describe how it is performed.
13. List 1 advantage and 1 disadvantage of the method mentioned in objective #12.
14. Name 2 indirect methods for measuring microbial growth and describe how each is performed.
15. List 1 advantage and 1 disadvantage of the methods mentioned in objective #14.
16. Explain the function of a chemostat in maintaining a continuous culture.
17. Describe how each of the following physical factors affect microbial growth: (a) temperature; (b) pH; (c) molecular oxygen; (d) osmotic pressure.
MICROBIAL METABOLISM
1. Define the following terms: (a) metabolism; (b) catabolism; and (c) anabolism.
2. Explain the significance of charge separation in energy generation.
3. Write 4 chemical reactions to demonstrate the catabolism of the 4 major macromolecules.
4. Name & define the 3 mechanisms by which Bacteria and Archaea generate ATP.
5. Define the following terms: (a) fermentation; (b) aerobic respiration; and (c) anaerobic respiration.
6. List the end products of: (a) glycolysis; (b) Krebs cycle; (c) electron transport/oxidative phosphorylation.
7. Differentiate fixed and diffusible electron carriers.
8. Explain the significance of microbial metabolism in the identification of microorganisms.
9. Write a chemical reaction for each type of fermentation mentioned and name a microbe that carries out each type of fermentation: (a) homolactic fermentation; (b) mixed acid fermentation; and (c) alcoholic fermentation.
10. Distinguish oxygenic from anoxygenic photosynthesis.
11. Name the 5 photosynthetic bacteria and distinguish them based on the following: (a) source of reducing power; (b) source of carbon; (c) major electron donor & acceptor.

MICROBIAL MOLECULAR BIOLOGY & GENETICS
1. Define the following terms: (a) gene; (b) genotype; (c) phenotype; and (d) mutation.
2. Distinguish between the processes of DNA replication, transcription and translation.
3. Explain RNA processing in prokaryotes and in eukaryotes.
4. Define the term operon and describe the different genes and regulatory regions found in an operon.
5. Distinguish between transformation, transduction and conjugation.
6. Define the term competency.
7. Explain the difference between specialized and generalized transduction.
8. Explain the difference between a F+ cell, Hfr cell, and F' cell.
9. Explain how genetic transfer increases the ability of bacterial cells to survive under adverse conditions such as exposure to antibiotics or heavy metals.
10. List 2 advantages and 2 disadvantages of using human cloning products.
11. Define the following terms and state how they are used in genetic engineering: (a) restriction enzyme; (b) agarose gel electrophoresis; (c) Southern blotting cDNA; (d) DNA library; (e) nucleic acid probe; (f) colony hybridization; (g) radioactive antibodies; (h) polymerase chain reaction (PCR).
12. Name the bacterium commonly used to transfer genes to plants and explain the steps involved in creating recombinant plants.
14. Describe the significance and applications of microbial genomics.

DIVERSITY OF MICROBIAL WORLD: PROTISTS AND FUNGI
1. List 3 characteristics of eukaryotic cells.
2. Name and distinguish the 2 major groups of flagellated protists.
3. Compare and contrast the aerobic protists (euglenoids, kinetoplastids, & heterobasalians).
4. Compare and contrast the heterokonts (chrysophytes, zanthophytes, diatoms, brown algae, & oomycetes).
5. Explain the differences in the life cycles of cellular & acellular slime molds,
6. Compare and contrast the major fungal groups (ascomycetes, basidiomycetes, zygomycetes, & deuteromycetes).

VIRUSES
1. Explain why viruses are considered obligate intracellular parasites. Define the following parts of a virus: (a) capsid; (b) capsomere; (c) nucleocapsid; (d) envelope; & (e) spikes.
2. Explain each of the following viral replication strategies: (a) double-stranded DNA; (b) single stranded DNA; (c) positive strand RNA; (d) negative strand RNA; and (e) retroviruses.

MICROBIAL ECOLOGY
1. Explain the following cycles, including the specific microbes involved: (a) C cycle; (b) N cycle; & (c) S cycle.
2. Describe a technique you could use to identify microbes in their natural habitat.

ECOSYSTEMS AND MICROBIAL INTERACTIONS
2. Define the following types of symbiosis: (a) commensalism; (b) mutualism; and (c) antagonism.
3. Describe the following microbe-plant symbioses: (a) rhizosphere; (b) mycorrhizae; & (c) legumes-Rhizobium.
4. Explain the microbe-invertebrates interactions in a hydrothermal vent.
5. Explain the interaction between microbes & ruminant animals.

APPLIED MICROBIOLOGY
1. Distinguish primary metabolites from secondary metabolites.
2. Name and describe the production of two foods through fermentation.
3. Name and describe the production of two beverages through fermentation.
4. Name and describe three methods used to preserve food.
5. List two specific examples of how microbes in food negatively impact the health of humans.
7. Describe the steps involved in the treatment of drinking water.
8. Define the term bioremediation and state one application.
9. State one advantage and one disadvantage of bioremediation.

SELECTED TOPICS IN INFECTIOUS DISEASE
1. Distinguish between contamination, colonization, infection and disease as it relates to microbial pathogens.
2. Describe three factors that microbes may produce to colonize, invade or survive within a host.
3. Describe and give examples of each mode of disease transmission.
4. List and give examples of the mechanisms of antimicrobial therapies.
5. Describe and give examples of at least three mechanisms of antimicrobial resistance.
6. Distinguish between active and passive immunity, and give examples of how this immunity might be acquired.
BIO 50 POLICY

ATTENDANCE
Attendance is required for your success and participation within your teams. Work on team assignments that contribute to your grade will take place during our class sessions. If you miss a class, you are responsible for obtaining notes and/or handouts from your fellow students. The College attendance policies will be adhered to.

COURSE CALENDAR AND LATE WORK
Students are urged to become familiar with the course calendars on Blackboard. No late work will be accepted for any assignment without prior notification and arrangement in consultation with the instructor.

ACADEMIC INTEGRITY
CUNY has an Academic Integrity Policy can be found at: https://www.kbcc.cuny.edu/studentaffairs/student_conduct/academic_integrity.html
The policy specifies definitions of cheating, plagiarism and obtaining unfair advantage and the possible consequences of such actions. This policy will be followed and enforced. Please review the policy and the definitions, particularly since you will be submitting a number of written assignments.

ACCESS-ABILITY SERVICES
Access-Ability Services (AAS) serves as a liaison and resource to the KCC community regarding disability issues, promotes equal access to all KCC programs and activities, and makes every reasonable effort to provide appropriate accommodations and assistance to students with disabilities. Your instructor will make the accommodations you need once you provide documentation from the Access-Ability office (D-205). Please contact AAS for assistance.

GRADING
Your final course grade will be determined as follows:

LECTURE
15% THREE LECTURE EXAMINATIONS
- Exam dates appear on the course schedule. All exams will be given online, and will be open for a 6-day window. No make up exams will be given.

15% WEEKLY HOMEWORK -WRITING ASSIGNMENTS
- Teams will work on homework problems and submit one set of answers via Blackboard. Assignments must be uploaded prior to the deadline and all team members must demonstrate their contribution to the work. The lowest of 8 scores will be dropped.

20% FINAL EXAMINATION
- A cumulative final for this course will be given (date to be announced).

LAB
25% FOUR LAB QUIZZES
25% LAB WRITTEN PROJECTS
- Three lab reports on identification of an unknown bacterium, bioremediation, and the Winogradsky column will be submitted.