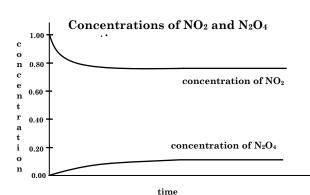
To become familiar with the law of mass action and Le Chatelier's Principle.

Chemical equilibrium


A system at chemical equilibrium is one in which the concentrations of all the components of the equilibrium are constant over time. For example, if 1 M nitrogen dioxide gas (a poisonous brown gas responsible for the smog seen in cities) is placed in a container and heated to 100°C it is found that dinitrogen tetraoxide (a heavy colorless gas) will be formed according to the equation:

 $2NO_2(g) \xrightarrow{} N_2O_4(g)$ nitrogen dioxide

The double arrow (\rightarrow) is used to indicate that the system will eventually stabilize to become a mixture of both components. Over time, it is found that a mixture of NO₂ and N₂O₄ will co-exist. The concentrations of both species can be determined if the initial concentration of NO₂ is known:

	$NO_2(g)$	$N_2O_4(g)$	
Initial concentration	1.00 M	0.00 M	
Concentration after some amount of time	0.76 M	0.12 M	

We can use a graph to show what happens to the concentrations of both species over time. The concentration of NO₂ decreases rapidly until it levels off at 0.76 M. The concentration of N₂O₄ increases until it reaches 0.12 M, at which time it stabilizes and remains constant. We say that once the concentrations of both species have stabilized and are unchanging the system is at **chemical equilibrium**.

Stressing a system at equilibrium

What happens if we take a system at equilibrium and make a change to it? For example, suppose that we have the system discussed above (NO₂ at 0.76 M and N₂O₄ at 0.12 M). We then add some NO₂ to the system so that the concentration of NO₂ is now 2.00 M. What happens?

What is observed is that the mixture responds to the change that we made. The response is also one which counteracts the change we made. The nitrogen dioxide will begin to react more rapidly and form more dinitrogen tetraoxide. After some period of time, the system will again stabilize and the concentrations will stop changing. We can calculate the new concentrations. Once the system reaches the a new equilibrium the concentration of NO₂ will be 2.16 M and N₂O₄ will be 0.99 M. What happened?

The law of mass action

For the formation of N₂O₄ from NO₂ it is found that at 100°C the ratio $\frac{(\text{concentration of N}_2O_4)}{(\text{concentration of NO}_2)^2}$

Goals

Discussion

is always equal to about 0.21 when the system is at equilibrium.

Sample calculation

Consider the initial mixture we looked at earlier. It was stated that at equilibrium the concentration of NO₂ was 0.76 M and the concentration of N₂O₄ was 0.12 M. Do these concentrations correspond to the (concentration of N O_2)

ratio
$$\frac{(\text{concentration of N}_2O_4)}{(\text{concentration of NO}_2)^2} = 0.21?$$

 $\frac{(0.12 \text{ M})}{(0.76 \text{ M})^2} = 0.2077 \approx 0.21$

Since the ratio is equal to 0.21 we say that the system is at equilibrium because we find that once the ratio is equal to 0.21 the concentrations stop changing.

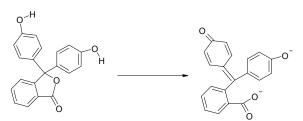
Now, what happens when the concentration of NO_2 is increased to 2.0 M as stated earlier? The system is no longer at equilibrium because NO_2 was added. Again, we can determine this by calculation. If the

ratio $\frac{(\text{concentration of N}_2O_4)}{(\text{concentration of NO}_2)^2}$ is equal to 0.21 then the system is at equilibrium.

But for 2.0 M and 0.12 M the ratio is: $\frac{(0.12 \text{ M})}{(2.0 \text{ M})^2} = 0.03$ so the system is not at equilibrium. In order for

the system to return to equilibrium it must form more N_2O_4 and, in the process, consume NO_2 . The concentration of N_2O_4 will increase to and the concentration of NO_2 will decrease to .

 $2NO_2(g) \rightarrow N_2O_4(g)$ nitrogen dioxide


These observations can be summed up by **Le Chatelier's Principle**: When a system at equilibrium is subjected to a disturbance, it will respond such that the effect of the disturbance is minimized.

Le Chatelier's principle is commonly observed in chemical reactions. In this experiment we will use two separate methods to disturb systems at chemical equilibrium.

- 1. Change the concentration of one or more species in the chemical equilibrium
- 2. Change the temperature of the system

Acid-base indicators

Acid-base indicators are materials that change color to reflect changes is solution acidity. For example, phenolphthalein is colorless in water when the solution is acidic (the concentration of H^+ ions is greater than the concentration of ^-OH ions). But when the solution becomes basic (the concentration of ^-OH ions is greater than the concentration of H^+ ions) phenolphthalein solutions are pink. The phenolphthalein is reflecting the acidity of the solution it is in.

colorless in acidic solution

pink in basic solution

Cobalt complexes		
Name	Formula	Color
cobalt(II) chloride	$CoCl_2(s)$	light blue
cobalt(II) chloride hexahydrate	$CoCl_2 \cdot 6H_2O(s)$	red
cobalt(II) ion	$\operatorname{Co}^{+2}(\operatorname{aq})$	red
cobalt(II) chloride ion	$\operatorname{CoCl}_4^{2-}(\operatorname{aq})$	dark blue

Procedure

This experiment can be performed in pairs or as a demonstration by the instructor.

Part 1. Chemical equilibrium using acid-base indicators Crystal Violet

 $\underset{\text{yellow}}{\text{HCV}}(\text{aq}) + H_2O(l) \xleftarrow{} CV^{-}(\text{aq}) + H_3O^{+}(\text{aq})$

1. Using a graduated cylinder add 5 mL of distilled or deionized water to a clean test tube. Add 2 to 3 drops of crystal violet indicator. Stir the solution using a glass stir rod.

What is the color of the solution?

Which form of crystal violet has a higher concentration in the solution, HCV or CV⁻?

Is the ratio $\frac{(\text{concentration of CV}^{-})}{(\text{concentration of HCV})}$ large or small?_____

2. Add a drop of 6 M hydrochloric acid solution to the test tube and stir the solution. Stir the solution using a glass stir rod.

What is the color of the solution now?_____

Continue adding hydrochloric acid solution to the test tube one drop at a time, recording the color of the solution after each drop of hydrochloric acid solution is added. Be sure to stir the solution after each drop.

Drops of HCl solution	Color
1	
2	
3	
4	
5	

What can you conclude from your observations? What is the effect of adding hydrochloric acid solution to the crystal violet solution?

Drong of NoOH		
Drops of NaOH solution	Color	
1		
2		
3		
4		
5		

3. Add 6 M sodium hydroxide solution to the test tube. Follow the same procedure as in step 2.

What can you conclude from your observations? What is the effect of adding the sodium hydroxide solution to the crystal violet solution?

Methyl Red: Methyl red is another common acid-base indicator. In solution it ionizes according to the equation:

$$HMR_{red}(aq) \xrightarrow{} H^+(aq) + MR^-(aq)$$

1. Using a graduated cylinder add 5 mL of distilled or deionized water to a clean test tube. Add 2-3 drops of methyl red indicator.

What is the color of the solution?_____

Which species has a higher concentration in the solution, HMR or MR⁻?_____

Is the ratio $\frac{(\text{concentration of MR}^{-})}{(\text{concentration of HMR})}$ large or small?_____

2. Add either HCl (6 M) or NaOH (6 M) to the solution dropwise to change the color of the solution. Which one, HCl or NaOH, should you add?

Did the solution change color as you predicted?_____

Part 2. Chemical equilibrium in cobalt complexes

Some ionic compounds exist as hydrates. They form weak bonds to water molecules. The attachment of these water molecules can affect the electronic structure of the compound and affect its color. An example is cobalt(II) chloride. Without the attached water molecules cobalt(II) chloride is a blue solid. When exposed to humid air, however, the salt forms a hydrate and turns a dark red. The compound is called cobalt(II) chloride hexahydrate and its formula is: $CoCl_2 \cdot 6H_2O$. This process can be represented by equation 1:

equation 1
$$\operatorname{CoCl}_2(s) + 6H_2O(g) \longrightarrow \operatorname{CoCl}_2 \cdot 6H_2O(s)$$

blue from air

By heating the hydrate water can be driven off:

equation 2 $\operatorname{CoCl}_2 \cdot 6H_2O(s) \xleftarrow[or cool]{\text{heat}} \operatorname{CoCl}_2(s) + 6H_2O(g)$

When dissolved in water the cobalt(II) chloride salt decomposes, resulting in the formation of the $Co(H_2O)_6^{2+}$ ion and a deep red solution. This process is represented by equation 3:

equation 3 $\operatorname{CoCl}_2 \cdot 6\operatorname{H}_2\operatorname{O}(s) \xrightarrow[\operatorname{H}_2\operatorname{O}(l)]{\operatorname{H}_2\operatorname{O}(l)} \to \operatorname{Co}(\operatorname{H}_2\operatorname{O})_6^{2+}(\operatorname{aq}) + 2\operatorname{Cl}^-(\operatorname{aq})$

Alternatively, solutions high in chloride concentration can form the dark blue aqueous $CoCl_4^{2-}$ ion (equation 4):

equation 4 $\operatorname{Co}(\operatorname{H}_{2}\operatorname{O}_{6}^{2^{+}}(\operatorname{aq})+4\operatorname{Cl}^{-}(\operatorname{aq}) \xleftarrow{\operatorname{Co}} \operatorname{Co}\operatorname{Cl}_{4}^{2^{-}}(\operatorname{aq})+6\operatorname{H}_{2}\operatorname{O}(\operatorname{l})$

In this part of the experiment we will test LeChatelier's Principle using the cobalt(II) chloride salt.

1. Place a few crystals of $CoCl_2 \cdot 6H_2O$ into each of three test tubes.

2. Add 2 mL of water to the first test tube. Label the test tube (H_2O). Stir the crystals to dissolve them into solution.

What is the color of this solution?

What is the dominant species of cobalt in this solution?

Explain your observations equation 3.

3. Add 2 mL of 12 M HCl to the second test tube. Label the test tube (HCl). Stir the crystals to dissolve them into solution.

What is the color of this solution?

What is the dominant species of cobalt in this solution?

4. Slowly add distilled or deionized water drop by drop with stirring, until no further color change occurs.

What is the color of the solution?

What is the dominant species of cobalt in this solution?

Explain your observations using equation 2.

Procedure

5. Now put the test tube into a hot-water bath and observe the color of the solution.

What is the color of the solution at room temperature?
--

What is the color of the solution in the hot-water bath?_____

What is the dominant species of cobalt in the hot water bath?

6. Take the test tube out of the hot-water bath and place it in an ice bath. Observe the color of the solution.

What is the color of the solution in the ice bath?_____

What is the dominant species of cobalt in this solution?

Explain your observations using the ideas presented in the Discussion section.

7. Add a few drops of distilled or deionized water to the contents of the third test tube from step 1. Add just enough water to wet the contents. Don't try to dissolve the salt.

What is the color of the solution?_____

What is the dominant species of cobalt in this solution?

8. Using a test tube holder, heat the contents of the test tube using a Bunsen burner until you are satisfied that all of the water has been driven off.

What is the color of the solution in the test tube?

What is the dominant species of cobalt in this solution?

Explain your observation using equation 3.

9. Add a drop of distilled or deionized water to the contents of the test tube.

What is the color of the solution in the test tube?

What is the dominant species of cobalt in this solution?	
Explain your observation using equation 3	

Part 3: Solubility and Complex Ion Equilibria of Zinc and Magnesium Ions

Both zinc(II) ions and magnesium(II) ions form insoluble hydroxide precipitates. However, these hydroxide precipitates are quite different in their properties, as this part of the experiment will show. For example, $Zn(OH)_2$ forms $[Zn(OH)_4]^{2-}$ with excess OH^- and $[Zn(NH_3)_4]^{2+}$ upon addition of NH_3 . All hydroxide precipitates dissolve in acid. Hydroxide precipitates that also dissolve in excess hydroxide are called **amphoteric** hydroxides.

When sodium hydroxide is added to a solution of zinc nitrate, $Zn(NO_3)_2$, the following reaction occurs.

 $Zn(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Zn(OH)_2(s) + 2NaNO_3(aq)$

Write the complete ionic equation and the and net ionic equation for the above reaction:

Complete ionic equation:

Net ionic equation:

A magnesium ion solution has a similar reaction:

$Mg(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Mg(OH)_2(s) + 2NaNO_3(aq)$

Write the complete ionic equation and the net ionic equation for the above reaction:

Complete ionic equation:

Net ionic equation:

Step 1: To each of three test tubes, add about 2 mL of $0.1 \text{ M Zn}(\text{NO}_3)_2$. To each test tube add one drop of 6 M NaOH and stir. Record what you see below.

Observation:

Step 2: To the first test tube from Step 1 above, add 6 M HCl drop by drop with stirring. To the second test tube add 6 M NaOH, again drop by drop with stirring. To the third test tube, add 6 M NH₃ drop by drop with stirring. Record your observations below:

Addition of HCl_____Addition of excess NaOH

Addition of NH₃

Repeat steps 1 and 2 using a solution of 0.1 M Mg(NO₃)₂. Record what you observe below.

Addition of 1 drop NaOH _____

Addition of HCl

Addition of excess NaOH	_
Addition of NH ₃	
Below write the equations for each of the steps above. (Your instructor will write these Copy them carefully).	e on the chalkboard.
For zinc hydroxide:	
The addition of HCl	
The addition of excess NaOH	
The addition of NH ₃	
For magnesium hydroxide:	
The addition of HCl	
The addition of excess NaOH	
The addition of NH ₃	_

From your observations above, how is Mg(OH)₂ similar to Zn(OH)₂?

From your observations above, how is $Mg(OH)_2$ different from $Zn(OH)_2$? (Note that some cations form many complex ions and others do not.) Which metal hydroxide is an amphoteric hydroxide?

Part 4: The reactions and color changes of copper(II) hydroxide

The chemistry of copper(II) hydroxide, Cu(OH)₂, is somewhat different than that of the zinc and magnesium hydroxides you studied above. The color changes you will see are rather subtle so watch carefully. (Your instructor will write all the chemical formulas and equations on the chalkboard. Copy them carefully.)

Step 1: Into each of 3 test tubes, place 2 mL of a copper(II) sulfate solution. Record the color below.

Color of copper(II) sulfate solution

Step 2: To two of the test tubes, add one drop of 6 M NaOH. Record what happens below, including any color changes.

Addition of 1 drop NaOH ______

Molecular equation for the above reaction:

Complete ionic equation for the above reaction:

Net ionic equation for the above reaction:

Note: Although we will not perform the experiment, if 6 M HCl were added to the copper(II) hydroxide precipitate formed in Step 2, the precipitate would dissolve just like the hydroxide precipitates of zinc and magnesium. All hydroxide precipitates dissolve in acid.

Step 3: Now add 6 M NaOH drop by drop to one of the test tubes from Step 2 above. Record what happens below including any color changes.

Addition of excess NaOH

Molecular equation for the above reaction:

Step 4: To the other test tube containing the copper(II) hydroxide precipitate in Step 2 above, add 6 M NH₃ drop by drop. Record what happens below, including any color changes.

Addition of NH₃

Molecular equation for the above reaction:

Step 5: To the remaining test tube from Step 1 containing the copper(II) sulfate solution, add one drop of 6 M NH₃. Don't stir. Record what happens below, including any color changes.

Addition of 1 drop of NH₃

Complete ionic equation for the above reaction:

Net ionic equation for the above reaction:

Step 6: Now add 6 M NH₃ drop by drop to the test tube in Step 5 above. Record what happens below including any color changes.

Addition of excess NH₃

Molecular equation for the above reaction (only for the dissolving of Cu(OH)₂):

From your observations above, discuss how solutions of copper(II) ions **differ** from those of Zn(II) and Mg(II) ions as regarding their reactions with sodium hydroxide and ammonia. Do Cu(II) ions form amphoteric hydroxides? (In other words, is Cu(OH)₂ amphoteric?)

An Aside: Copper(II) sulfate in crystalline form actually has water of hydration, just as cobalt(II) chloride does. The formula is correctly written as $CuSO_4 \bullet 5H_2O$ and the name is copper(II) sulfate pentahydrate. Your instructor will show you some of the crystals and then heat them in a large test tube to drive off the water. A few drops of water will then be added to the dried solid. Record the color changes below. Note: In describing a solid whose water of hydration has been removed, the word "anhydrous" is sometimes added to the name. "Anhydrous" means "without water."

Color of crystalline copper(II) sulfate pentahydrate

Color of the heated powder, copper(II) sulfate anhydrous _____ [The equation for the reaction is $CuSO_4 \bullet 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$]

Hydroxide Properties Summary Table

Metal hydroxide	Dissolves in excess OH ⁻ (yes or no)	Forms complexes with NH ₃ (yes or no)	Is an amphoteric hydroxide (yes or no)
Zn(OH) ₂			
Mg(OH) ₂			
Cu(OH) ₂			