Chemistry 1100 Practice Exam 1

Show all of your work and reasoning to receive credit. Include units as well. You may not share calculators.

1. A 24.4 L volume of ethane gas is heated from 19° C to 122° C at constant pressure. What is the final volume of the gas?

2. A sample of nitrogen gas kept in a container of volume 0.24 L and at a temperature of 12° C exerts a pressure of 11.2 atm. Calculate the number of moles of gas present.

3. A gas at 450 mm Hg and $14^\circ\,\,$ C occupies a volume of 2.85 L. Calculate its volume at STP.

4. A 2.10 L vessel contains 4.44 g of a gas at 1.00 atm and 27.0 $^{\circ}$ C. Calculate the density of the gas in grams per liter. Then calculate the molar mass of the gas.

5. Consider the formation of nitrogen dioxide from nitric oxide and oxygen: 2NO (g) + O₂ (g) \rightarrow 2NO₂ (g) If 4.5 L of NO are reacted with excess O₂ at STP, what is the volume in liters of the NO₂ produced?

6. The first step in the industrial recovery of zinc from the zinc sulfide ore is roasting, that is, conversion of ZnS to ZnO by heating: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g) \Delta H = -879 \text{ kJ}$ Calculate the heat released (in kJ) per gram of ZnS roasted. 7. A 4.25 kg piece of gold metal is heated from 15.5 $^{\circ}$ C to 197.0 $^{\circ}$ C. Calculate the heat absorbed (in kJ and kJ/mol) by the metal.

8. A quantity of 2.5000 g of methanol (CH₃OH) was burned in a constant volume bomb calorimeter. Consequently, the temperature of the water rose by 2.40 $^{\circ}$ C. If the heat capacity of the bomb plus water was 10.4 kJ/ $^{\circ}$ C, calculate the molar heat of combustion of methanol.

9. Calculate the heat of decomposition for the process below at constant pressure and 25 ° C: CaCO₃ (s) \rightarrow CaO (s) + CO₂ (g) Use the standard enthalpy of formation data given at the end of the exam.

10. Calculate the standard enthalpy change for the reaction: $2Fe(s) + Al_2O_3(s) \rightarrow 2Al(s) + Fe_2O_3(s)$ given that: $Al_2O_3(s) \rightarrow 2Al(s) + 3/2O_2(s)$ A H = +1670 kJ

$AI_2O_3(s) \rightarrow$	$2AI(s) + 3/2O_2(g)$	$\Delta H = +16/0 \text{ kJ}$
$Fe_2O_3(s) \rightarrow$	$2\text{Fe}(s) + 3/2\text{O}_2(g)$	$\Delta H = +822 \text{ kJ}$

$$\begin{split} PV &= nRT \; STP = 1 \; atm \; and \; 0^{\circ} \quad C \; T\kappa = T^{\circ} \; c + 273.15 \\ 760 \; mm \; Hg = 1 atm \; 1 \; torr = 1 \; mm \; Hg \; 1.01 \; kPa = 1 \; atm \\ R &= 0.082057 \; Latm/Kmol = 8.31 \; J/Kmol \; N_A = 6.022 \; x \; 10_{23}/mol \\ MM &= dRT/P \; u_{rms} = \sqrt{3}RT/MM \; r_{1}/r_{2} = \sqrt{MM2}/\sqrt{MM1} \\ (P + an_{2}/V_{2})(V-nb) &= nRT \; P_{T} = P_{A} + P_{B} + P_{C} + \dots \\ \Delta \; E &= q + w \; w = -P \; \Delta \; V \; 1 \; Latm = 101.3 \; J \; \Delta \; H = \Delta \; E + P \; \Delta \; V \\ \Delta \; E &= \; \Delta \; H - RT \; \Delta \; n \; C = ms \; q = ms \; \Delta \; T = C \; \Delta \; T \\ \Delta \; H_{rxn} &= \; \Sigma \; n \; \Delta \; H_{f}(products) - \; \Sigma \; n \; \Delta \; H_{f}(reactants) \end{split}$$

substance	specific heat $(J/g^{\circ} C)$
aluminum	0.900
gold	0.129
graphite	0.720
diamond	0.502
copper	0.385
iron	0.444
water (liquid)	4.184
ethanol	2.46
substance	Δ H _f (kJ/mol)
H2O (l)	-286
$H_2O(g)$	-241.8
CaO (s)	-635.6
$CaCO_3(s)$	-1206.9
$CO_2(g)$	-393.5
HCl (g)	-92.3