Chemistry 1100 Practice Exam 1

Show all of your work and reasoning to receive credit. Include units as well. You may not share calculators.

1. A 24.4 L volume of ethane gas is heated from $19^{\circ} \mathrm{C}$ to $122^{\circ} \mathrm{C}$ at constant pressure. What is the final volume of the gas?
2. A sample of nitrogen gas kept in a container of volume 0.24 L and at a temperature of $12^{\circ} \mathrm{C}$ exerts a pressure of 11.2 atm . Calculate the number of moles of gas present.
3. A gas at 450 mm Hg and $14^{\circ} \mathrm{C}$ occupies a volume of 2.85 L . Calculate its volume at STP.

4. A 2.10 L vessel contains 4.44 g of a gas at 1.00 atm and $27.0^{\circ} \mathrm{C}$. Calculate the density of the gas in grams per liter. Then calculate the molar mass of the gas.

5. Consider the formation of nitrogen dioxide from nitric oxide and oxygen:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
If 4.5 L of NO are reacted with excess O_{2} at STP , what is the volume in liters of the NO_{2} produced?
6. The first step in the industrial recovery of zinc from the zinc sulfide ore is roasting, that is, conversion of ZnS to ZnO by heating:
$2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-879 \mathrm{~kJ}$
Calculate the heat released (in kJ) per gram of ZnS roasted.
7. A 4.25 kg piece of gold metal is heated from $15.5^{\circ} \mathrm{C}$ to $197.0^{\circ} \mathrm{C}$. Calculate the heat absorbed (in kJ and $\mathrm{kJ} / \mathrm{mol}$) by the metal.
8. A quantity of 2.5000 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was burned in a constant volume bomb calorimeter. Consequently, the temperature of the water rose by $2.40^{\circ} \mathrm{C}$. If the heat capacity of the bomb plus water was $10.4 \mathrm{~kJ} /{ }^{\circ} \quad \mathrm{C}$, calculate the molar heat of combustion of methanol.
9. Calculate the heat of decomposition for the process below at constant pressure
and $25^{\circ} \mathrm{C}: \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Use the standard enthalpy of formation data given at the end of the exam.
10. Calculate the standard enthalpy change for the reaction:
$2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
given that:

$$
\begin{array}{ll}
\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Al}(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+1670 \mathrm{~kJ} \\
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+822 \mathrm{~kJ}
\end{array}
$$

```
PV = nRT STP = 1 atm and 0}\mp@subsup{0}{}{\circ}\mathrm{ C Tк = T }\mp@subsup{}{}{\circ
760 mm Hg=1 atm 1 torr = 1 mm Hg 1.01 kPa =1 atm
R = 0.082057 Latm}/\textrm{Kmol}=8.31 J/Kmol NA = 6.022 x 1023/mol
```



```
(P+an2/V2)}(\textrm{V}-\textrm{nb})=nRT PT = PA + PB + Pc+...
|E=q+ww = -P DV1 Latm=101.3 J \Delta H = \Delta E + P \DeltaV
|E=\DeltaH-RT\DeltanC=msq=ms\DeltaT=C\DeltaT
|Hrxn = \sumn\Delta Hf(products) - \sumn}\Delta\textrm{n
substance specific heat \(\left(J / g^{\circ} \quad\right.\) C)
aluminum 0.900
gold \(\quad 0.129\)
graphite \(\quad 0.720\)
diamond 0.502
copper 0.385
iron 0.444
water (liquid) 4.184
ethanol 2.46
substance \(\quad \Delta \mathrm{Hf}(\mathrm{kJ} / \mathrm{mol})\)
H2O (l) -286
H2O(g) -241.8
CaO(s) -635.6
CaCO3(s) -1206.9
CO2(g) -393.5
HCl (g) -92.3
```

